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Lol COLLECTION OF ZERO-LIFT DRAG DATA ON BODIES OF REVOLUTION

FROM FREE-FLIGHT INVESTIGATIONS

By William E. Stoney, Jr.
SUMMARY

This report presents a compilation of most of the zero-lift drag
results obtained from free-flight measurements made by the Langley
Pilotless Aireraft Research Division on fin-stabilized bodles of revo-
1ution. The data are arranged on standard forms, which also contain
the significant geometrical factors. Supplementary date have been pro-
vided to facilitate the determination of the body pressure drags from
the measured total drags. Summary plots and discussions have been
included to provide a unified and broad picture of the effects of body
geometry on zero-lift drag. o

The Mach number range of the tests extends from 0.6 to approximately
2.0 and the Reynolds numbers based on body length from 2 X lO6 to 100 x 107

INTRODUCTION

At the present time, the most asccurate method of obtaining the zero-
1ift drag at transonic and low supersonic Mach numbers of an arbitrarily
shaped body of revolution 1s measurement by means of wind-tunnel or free-
flight tests. The lmportance of accurate knowledge of zero 1ift has been
increased by the usefulness of the "area rule" concept in the design of
complete alrcraft configurations, since this concept states that the drag
of a complete aircraft configuration can be determined from its equivalent
body of revolution.

The Langley Pilotless Aircraft Research Division has flown nearly
200 bodies of revolution of different sizes and shapes for the purpose of
measuring their drag at zero 1ift. The results of many of these tests
have been published in reports dealing with the systematic variations
which they explored. However, many of these models were designed &s
equivalent bodies of revolution, and their drags have been published in
the widely scattered reports dealing with the airplane conflgurations
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they represented. In view of the large amount of ddta available and of
the comparative obscurity of a large part of it, it was felt that a
collection of such data presented in & standard form would be of ald to
the aircraft and misslle designers.

It is hoped that this collection will be useful in several ways.
The large number of shapes presented herein may allow the designer to
estimate easlly the drag of a desired shape by & simple comparison.
Supplementary date and theoretical estimates have been provided to
facilitate the determinatlon of the body pressure drags from the measured
total drags. Summary plots and discussions have been included to provide
the user with a unified and broad picture of the effects of body geometry
on zerc 1lift drag.

SYMBOLS
1 length
d maximum dlameter
1/d fineness ratio
r/R ratio of body radius at any station to maximum body radius
x/Z ratio of dlstance measured from apex of nose to total body
length
Sb/A ratio of body wetted area to body frontal area (actual values

Cp 1
calculated from expression —= = 4i/d £ 32 yhich is
Cr o R 1

correct relaticonship between friction coefficient Cy Dbased
on wetted area and friction drag coefficient CDf based on

body frontal area)

S¢/A ratio of fin wetted area to body frontal area
Ay /A ratio of body base area to body frontal area
8p body slope at x/l =1 (slope is always negative but is

expressed as positive)

Ul
R Reynolds number based on body length, E;—
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e} free-stream density
U free-stream veloclty
o free-stream viscosity
M free-stream Mach number
Cp drag coefficient based on body frontal ares, —2£§§§
. p
iy
CP pressure coefficient, Pressure - Free-stream pressure
Py2
2
Ce friction drag coefficient based on wetted area
r' = r/R where R is meximum body radius

"
!

= x/lpoge OF X/lafterbody

ry' = Tpgge/R
"TESTS

Most data of thils report were obtained by the following procedure:
A fin-stabilized model flying at or near zero lift was tracked with a
CW Doppler radar unit as it decelerated through a speed range from
supersonic Mach numbers to high subsonic Mach numbers. The resulting
velocity time history was arithmetically differentiated to give a decele-
ration time history. Shortly before or after the flight, a record of
the atmospherlc properties (density, temperature, and wind velocity) was
obtained from the flight of a radiosonde balloon. This record, together
with a space-position time record of the flight, permitted the zero-1lift
drag coefficient to be calculated. The tests differ only in the method
of launching the models into free flight and in the method of obtalning
the altitude time history.

Rocket Model Tests
The rocket-test method is the propulsion of the models by rockets

located in the model, or behind the model in the form of booster rockets
which dropped away after burnout. In these tests the models were also
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tracked by an NACA modified SCR-584 position radar tracking unit, the
data of which were used to obtain the space-position time records used

in the data reduction. In general, the rocket models were of a fair
size; 5 to 8 inches in diameter and up to 12 feet in length. The data
vere obtained with the models at all altitudes up to over 50,000 feet and
Mach numbers over 4. A few carried telemetering equipment and from these
the total drag was also obtalned from decelercmeters and the base drag
from pressure cells.

Helium-Gun Tests

The second technique, the helium-gun test, was the launching of
small models (roughly 2 inches in diameter and 12 inches long) from a
helium gun. The helium gun used to launch these models was a 2k-foot
smooth-bore barrel 6 inches in diameter attached by valves to a
100-cubic-foot tank of helium under a pressure of 200 pounds per square
inch absolute. The models were ejected at Mach numbers up to 1.4. The
space time histories of these models were calculated from the velocity-
time data, and the data were reduced as before. A satisfactory check
of the flight-path calculation method was made by tracking several models
with the SCR-584 unit. The models were fired at an angle of 20° to the
horizontal and never rose over an altitude of 2,000 feet.

Accuracy

Inasmuch as the tests have been made over a period of several years
with continually varying techniques, it is difficult to assign a general
figure for thelr accuracy. The velocimeter record is accurate to within
0.2 percent, and the derived accelerations, although the result of a
short-time averaging process, are accurate to within 1 percent except in
the region of the drag rise where it 1s possible for abrupt changes to
be somewhat softened by the averaging process.

One approach to a value of accuracy is the comparison of the drag
of identical models, since all the variable factors, inaccuracies in body
ordinates, velocity measurement, atmospheric conditions, wind velocity,
and data reduction are included.

From the variations shown by the models of configurations 8, 22, 27
to 30, 75 to 77, 106 to 109, 128, 139, and 151 reasonable limits of error
for Cp and Mach number appear to be

ACp = #0.01

M = #0.01
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Another check on the accuracy is given by a comparison of the data
of model 109 with & wind-tunnel test of an ldentical configuration,
This comparison is shown in figure 1 and is quite good.

A third indication of the accuracy of the tests is glven by a com-
parison of the nose pressure drags obtained from eight helium-gun models
with values measured in a wind tunnel and calculated by second-order
theory. The comparisons are quite close and indicate accuracy at least
to the values gquoted (see the discussion on nose drags in the section
"Summary Curves').

PRESENTATION COF DATA

General Organization

With the thought in mind that the important product of these tests
is the body pressure drag, the configurations are divided into two types -
"smooth" and "bumpy" - and are presented in order of increasing fineness
ratio. A smooth body is defined as one whose meridian increases wlithout
inflection points to a maximum and stays constant or decreases without
inflection points to a minimum. All other bodies are considered to be
bumpy. Since only the nose and afterbodyl contribute to the pressure drag,
the significant fineness ratio of the smooth bodles has been assumed to be
that of the sum of the nose and afterbody. Such grouping assumes that the
effects of the nose on the afterbody drag are of second order. Since such
a division cannot, in general, be made for the bumpy bodies, they are pre-
sented in the order of their total fineness ratios. This classification
by fineness ratio has the advantage of simplicity, and its usefulness 1is
based on the general fact that this parameter 1is the most important single
factor affecting body pressure drag.

The shape of the parts of the body 1s the other varlable and since
the assumption that the effect of shape is independent of fineness ratlo
appears to be useful, the body ordinates have been nondimensionalized
and are presented in graphical form for each of the configurations. 1In
order to utilize this assumption strictly, the individusl parts should
have been presented individually; however, this manner of presentation
would have posed great problems for the bumpy bodies and was abandoned
in favor of the simpler method used. This method has the advantage of
enabling comparisons of bumpy and smooth bodles to be made by matching

1The nose is herein defined as that part of the body up to the maxl-
mum diameter and the afterbody as that part from the maximum diameter to
the base. Cylindrical sections of maximum diameter are considered as
gseparate units and thus the sum of the values of 1/d& of the nose and
afterbody can be less than the total value of 1/d of the body.
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thelr nondimensional ordinate curves and their total fineness ratios.
Comparisons of the drag curves of such bodies allow estimates of the
bumpiness of a bumpy body, that 1s, insofar as drag is concerned.

The basic data are supplemented by curves of friction, base, step,
and fin drag (figs. 2 to 5). Summary curves of data from various
systematic investigations are presented in figures 6 to 10. Some
curves showing the general effect of body shape on drag appear in
figures 11 to 15. The basic data are presented in figures 16 to 183
and are separated into two main groups. Figures 16 to 120 present the
data for all the smooth bodles and the data for the bumpy bodies are
presented in figures 121 to 138. (These data were compiled from refs. 1
to 16.) A particular configuration may be found quickly by reference to
table I where the configurations are listed together with their distin-
guishing geometrical properties.

Presentation of Model Characteristics

Enough information appears in the drawing and graphical presentatlon
of the ordinates to allow reconstruction of the model with reasonable
accuracy. Many of the smooth bodles had analytical meridians of parabolic
form or mixed parabolic and hemispherical form; this notation has been
made 1n the figure. The following equations were used for parabolic noses
and afterbodies, respectively,

2

r' 2x' - x!

r! 2

1]

1 - (l - rb')x'

Pertinent fineness ratlos, area ratlios, and angles are given to
allow quick comparisons of configurations. The type of test, rocket or
helium gun, is also noted. All dimensions given in these figures are in
inches.

Presentation of Datsa

Total zero-lift drag coefficients based on body frontal area and
Reynolds number based on body length are presented for each model.” The
total-drag curves are curves falred through the original data points by
the present author and thus may in some cases differ slightly from
values previously published. For those configurations for which more
than one model were flown the individual curves are labeled a, b, and
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so forth. For the models on which base pressures were measured, the
base pressures are alsoc presented.

For convenlence, the friction drag calculated by the method of Van
Driest (ref. 17) has been presented for each model. For cases in which
the Reynolds numbers and the data appeared such that the flow over both
the body and fins was turbulent, the points calculated were Indicated by
8 square symbol [ and connected with a dashed line. If the data
appeared to be in the range in which the fin boundary layer may have been
either laminar or turbulent, calculations were made for both conditions,
and the points for both conditions were presented and left unccnnected;

thus, the circled points (©) represent the calculation for turbulent body
flow plus laminar fin flow.

A word of warning is in order here: In the figures 1n which both
symbols appear at the subsonic end of the Mach number scale and only the

fully turbulent symbol [] appears at the supersonic value, the Reynolds

numbers are such that it 1s possible that transition from laminar to
turbulent flow has occurred at some Mach number between the two extremes.
This means that any pressure or wave drags derived by subtracting base,
fin, and friction drag from the total drag can be in error by the amount
of the difference between the turbulent and laminar fin friction drags.
Configuration 158 (fig. 164) presents a case in polnt, although for this
model the transition appears rather dramstically In the total-drag curve.
This is unusual, and the change would not be at all apparent if the
transition had occurred in the rapidly rising section of the drag curve.

Further discussion of friction drag is presented in the "Supplementary
Data" section.

SUPPLEMENTARY DATA

This report presents a collection of total-drag curves for varlous
bodies of revolution stabilized by fins. The usefulness of the data 1s
largely determined by the information which can be obtalned from these
total drags concerning the values of the pressure or wave drags of the
bodies alone (i.e., not influenced by the fins), since it is the value
of this component of the supersonic drag that 1s always difficult and
often impossible to calculate from theoretical considerations in the low
supersonic speed ranges considered. In order to obtain the wave drag of
the body alone from the test results, the friction, base, and fin pres-
sure drags must be known or assumed.

The friction drag can be calculated accurately for most bodies. For
many bodies, the base drag is negligible and the base drag for most of
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the remaining bodies can be estimated accurately from empirical curves.
The fin affects the drag in three ways - fin pressure drag due to fin
induced pressures, pressure drag of the fin due to the body, and pressure
drag on the body due to the fins. The value of the first component has

in this report been either measured or calculated for most of the fins
used. Values of the interference terms are, in general, not calculable.
For the models of the present report, it appears reasonable to assume that
the interference terms are negligible for most cases since the fins are
extremely thinZ2,

The following sections provide the data necessary in the breakdown of
the total-drag curves into thelr component parts.

Friction Drag

Figure 2 presents average flat-plate friction ccoefficlents based on
wetted area as functions of total Reynolds number for various Mach numbers.
All values are for an insulated wall (no heat flow), which is correct for
the wooden-surface models and 1s nearly correct for the models with metal
surfaces and Mach numbers near 1. These values were used in the calcula-
tion of the friction drags shown on the data plots. The use of flat-
plate values for bodies of reveolution is not exactly correct because of
at least two factors -, first, the difference between two- and three-
dimensional flow, and, second, the existence of velocities higher than
free-stream velocity on the surface of the bodies. Both of these effects
are functlons of body fineness ratio, the effects being most in evidence
at lower values of l/d. Reference 18 gives an approximate correction
factor for the higher average veloclties existing on bodies of revolution

C o
as \  body of rev =1 + %7% which is supposedly vallid at Mach numbers

(CDf)flat plate '~ . Ce

as high as 1. Both effects are apparently small for the bodies of this
report. ’

°The interference has been shown to be essentially zero by wind-
tunnel tests of configuration 109 (see fig. 1) since the fin drag
obtained by subtracting finned and unfinned results agreed exactly
(except at M = 1) with fin drags obtained on special free-flight models
on which the interference drag was zero by virtue of the cylindrical
shape of the body. ©Since model 109 is of high fineness ratio this
result cannot be applied generally. An attempt to measure fin inter-
ference was made with configurations 48 and 49. Although these bodies
had low-fineness-ratio afterbodies on which the fin interference was
‘expected to be large, the measured differences were small and in the
opposite sense to that expected.
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Another assumption has been made in the calculation of the friction
drag - namely, the bodles have been assumed to have either completely
laminar or completely turbulent flow on the body and fins. Thils assump-
tion may be erroneous for some of the models flying at Reynolds numbers
from 1 X 106 to 5 x 10° and should be kept in mind in the analysis of
such data. The only models for which this assumption is obviously wrong
are models 104 and 105 (figs. 112 and 113), even though they flew at
extremely high Reynolds numbers. These models are both models of the
NACA EM-10 body, which has been extensively tested in wind tunnels (see
refs. 13, 19, and 20). These models are more carefully finished than the
majority and long runs of laminar flow (Reynolds numbers up to 4o x 106)
have been detected on the body on some flights. Even more likely are
long runs of laminar flow on the fins and since the fins of these models
contribute nearly as much friction-drag area as the body, this would
cause a large error in the calculations as made. With these considera-
tions, if the pressure drag of this configuration is desired it would be
best to obtain it from theory or the wind-tunnel results presented in
references 13, 19, and 20. Note, however, that the base drags obtained
from flight measurements should be the most accurate, since the tunnel
measurements contain sting interference effects. References 13, 19, and
20 also give examples of the effects of Reynolds number, transition, and
heat transfer on friction drag.

Base Pressure and Base Drag

Reference 21 contains excellent analysis and data on base pressure
behind both two- and three-dimensional bodies when the boundary layer is
turbulent ahead of the base and the Mach numbers are in the range con-
sidered in this report. The following discussion follows this reference,

Three-dimensional base drag.- Flgure 3 presents the base-pressure
drag coefficients as a function of Mach number for a cylindrilcal after-
body of infinite length (refs. 21 to 23). As mentioned 1n reference 21,
the base pressure behind a cylindrical base can be influenced by flow
conditions such as fin and nose pressure fields ahead of the base even
when the boundary layer is turbulent well ahead of the base. For the
bodies of the present report, such differences are belleved tc be small
enough that the curve shown in figure 5 may be used, the possibllity of
such an error being always kept in mind, however, especially for subsonic
speeds (see ref. 18, pp. 30 to 3h4).

Most of the bodies reported herein have afterbodles, that is, a base
diameter which is smaller than the maximum diameter. The base drag of
such bodies is discussed in reference 21; however, the method of evalu-
ating such base pressures discussed therein is too complicated for the
purposes of the present paper, since the value of the base drag is seldom
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a very large percentage of the total drag for boattailed bodies. Some
published wind-tunnel data on the base drag of conical afterbodies sug-
gest the empirical expression

c =C (rbase 3
D,base ~ ¥D,cylinder base\ R

Care must be taken in applying this equation at subsonlec Mach numbers
since 1t does not account for the possibility of negative base drags
which can exist (ref. 24).

Two-dimensional base pressures.- Flgure 3 also presents base-
pressure coefficients for a two-dimensional base from references 21 and
25. The data represent the base pressures behind slab wings. They are
presented herein as an estimate of the pressures behind a rearward
facing step on a body of revolution.

Pressures on a Forward Facing Step

Figure 23 ﬁresents the pressure coefficients required to separate
the turbulent boundary layer in front of a step of several times the
boundary-layer thickness. (See ref. 26.) It appears from page 52 of
reference 18 that a pressure coefficient of Cp = 0.41 1s valid at sub-

sonic speeds as well as Mach 1. Agaln these essentially two-dimensional
values are presented as estimates for the pressures ahead of forward
facing steps on bodies of revolution.

Fin Pressure Drag

Figure 5 presents the pressure-drag coefficients based on the
exposed plan-form area of the fin (note this is one-half the value of
Sf/A given on model sheets) for most of the fins used in this report.

Extreme accuracy has not been striven for or obtained, since in most
cases the fin pressure drag is such a small part of the total drag that
a 50-percent error in fin drag is of the order of the test accuracy.

The pressure drag of fin type A 42222;7', which is used by the
- majority of the models, was measured by means of special helium-gun
models. The drag of fin type B 425%257 was measured by special rocket

models, the data for which are presented in reference 27. The super-
sonie pressure drag thus obtained is so similar to that measured on
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type A that they have been shown as one curve. The pressure drag of fin
type C szl was estimated by reducing the drag rise of a 6-percent-thick
delta wing of reference 27 (p. 47) by the square of the thickness ratlos.
The pressure drag of type D zfi:] is simply the two-dimensional base

pressure of figure 3 referred now to the fin plan-form area.

SUMMARY CURVES

Systematic Investigations

A majority of the smooth bodies of this report were flown in pro-
grams designed to investlgate the results of systematic geometrical
changes in the body shapes on zero-lift drag. Figures 6 to 10 present
surmary plots of total-drag coefficlents for the most important of these
investigations. These figures give a broad picture of the effect of the
most important variables on the total body drag; that is, fineness ratio
and maximum diameter location (fig. 6), nose shape and fineness ratio
(figs. 7 to 9); (see also configurations 1 to 8) and afterbody fineness
ratio and shape (fig. 10). Various other methods of correlating the data
will be immediately apparent to the reader, but it is suggested that the
original references be consulted before too elaborate an analysls 1is
attempted, since the various data have been handled in more detail in
these reports than in the present report.

Drag Analysis

The data of this report, together with data from wind-tunnel tests
and thecretical results allow some general conclusions useful to designers
to be drawn. Some of these conclusions are presented in the following
paragraphs. The effects of nose and afterbody shape are discussed sepa-
rately, after which a brief discussion is given of the effects of the
shapes of complete bodies.

Nose drag.- In the analysis of nose drag it is helpful to use omne
of the basic premises of this report, that is, that the effects of shape
and fineness ratio may usefully be considered separately. The variation
at M = 1.4 of the nose pressure drag with 1/d 1is presented in fig-
ure 11. The lower curve represents near minimum nose pressure drags. At
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low values of l/d, the minimum curve was obtained by fairing through

the flat-face value (Cp = 0.8Cpt tal) and hemisphere values (ref. 28).
o

Above 1/d = 1.4 it was determined from second-order calculations

(by the method of Van Dyke, ref. 29) of bodies defined by r' = x'5/h
2x' - 2 x'2
n

and r' = S E— Note that neither of these bodies has zerc slope at

L
its maximum diameter. Since the calculations and experiment agree well
for noses having 1/d = 3 (see fig. 12) a fair amount of confidence may
be placed in the values shown. Second-order calculations are also shown

for the parabolic nose r' = 2x' - x'2 used on so many of the models in
this report. Taylor-McColl cone values are alsc shown for comparison.

Although Z/d 1s shown to be a powerful parameter, the effects of

shape can be 1mportant as can be seen in figure 12. The results shown
in this figure are particularly gratifying in that the values from free-
flight and wind-tunnel tests and several theories are in marked agreement.
As can be seen from thils figure, there is no one minimum-drag shape for
the entire Mach number range but several do well over the entire range.
(Refs. 30 and 31 present the drags of many shapes not shown here.)
Note these results are for l/d = 3 and the relative drags may change
with 1/d. Data from reference 30 have been combined with the data of
this report in part (b) of figure 12 to illustrate some general state-
ments about the effect of nose geometry on drag. The drags of the

l/h and the ellipsoid show the high peak drag level and late peak drag

Mach numbers characteristics of blunt nose bodies. The xl/l+ nose
though not absolutely sharp (the cone could also have been used) shows
the early drag rise and early sharp peak drag and the rapld decrease of
drag with Mach number to be expected on sharp-nose bodies of revolution.

The Von Kdrm€n nose which has the xi/4 profile at its apex but which
1s blunter immediately behind the apex produces a drag variation with

Mach number which incorporates the desirable features of both types of
nose, that is, late drag rise, soft peak and low peak drag level, and

decreasing supersonlc drag. This result is perhaps not so surprising

since this nose was designed (from linearized theory) for minimum drag
for a given Z/d at low supersonic Mach numbers.

X

When these results are applied to the design of a complete body, it
must be remembered that the interference drag of the nose on the after-
body is also a function of nose shape. There are iIndications that the
lowest drag shapes which do not have zero slope at their maximum diameter
have higher interference drag potentlal than their smoother appearing
brothers. (See the discussion entitled "Total body drag.")
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Afterbody drag.- The data of figure 10 have been analyzed to give
the drags of the afterbodies caused by the pressures acting over the
afterbodies and bases. (For details of the drag breakdowns, see ref. 6.)
The results are presented for M = 1.2 1in figure 13. The data for the
conical afterbodies are compared with the following semiempirical
equation:

2 o) 3
_0.0018 + 0.000718%[  (Tp\] ) (1)
Dot ~ M l:l (R)J * Cdb(R )
where
n==4 M < 3.5)
n=>3 M > 3.5)

8 1is the slope of the afterbody in degrees (used as positive, although
actually always negative; not applicable for positive values of 8) and
Cdb is the base pressure drag of the cylinder (fig. 3). The first term

of the equation approximates the second-order theoretical values calcu-
lated by Jack (ref. 32) while the second term is a purely empirical
approximation for the effect of base diameter ratio on the base pressure.
In view of the inaccuracies inherent in both the experimental and the
theoretical values (the theory, for instance, was calculated only for

M > 1.5), the nearly exact agreement of the two shown in figure 13(a) is
almost embarrassing and should be regarded as somewhat fortuitous. How-
ever, it is apparent, from the comparisons of this report with the second-
order theory of reference 32 and from the comparisons of reference 6 with
other theoretical calculatlons, that afterbody drags can be calculated
reasonably accurately for afterbodies having meximum slopes of less than
about 15°. At or above this degree of convergence large discrepancies
may be expected (see ref. 6), theoretical calculations tending to over-
estimate the drag.

All the test results of both parabolic and conical afterbodies and
the theoretical calculations lead to an extremely simple rule for
selecting minimum drag afterbodies if a required value of l/d is given.
The center line in figure 13(b) represent conical afterbodies with a
slope of 4.5° (or parabolic meridiens with a base slope of 99) . The
data points represent the parabolic afterbodies of figure 10; note also
that the tangent to the parabolic base angle is always exactly twice that
of the inscribed conical body. The minimum drag bodles sall fall on this
line. The fact that for a given value of 1/d the required ratio of
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base diameter to maximum diameter is much less important at the higher
values of 1/d can be noted in figure 13(a), and is shown more graph-
ically by the shaded ares on the lower figure which shows the limits

of configurations whose drags lie within about 10 percent of the minimum.
The range of optimum conical angles indicated (3.5° to 6.5°) is of the
same order (5° to 7°) as that used for some time by ballisticians for
the drag reduction of bullets.

Total body drag.- If the minimum afterbody drags at each value of
1/d are taken, the resulting plot (fig. 14) may be said to represent a
near minimum possible afterbody pressure drag for M = 1.2. A similar
curve 1s presented for the nose drag and was obtained by falring through
the blunt nose values from configurations 1 to 7, through the minimum

1/d = 3 nose drag (r' = x'l/2 (fig. 12)) and through the M = 1.k
values for the higher values of Z/d (fig. 11). These curves are pre-
sented to glve some practical boundaries, admittedly empirical and rough,
to the minlmum drag problem.

If the nose and afterbody minimum drags are added for bodies with
their maximum diameter at their midpoints, the solid curve on figure 15
is obtained. If the same drags are added with care taken to position
the maximum dismeter at the most favorable posltion the dashed curve
is obtained. (This position moves rapidly redrward from x/l = 0.55
for 1/d =7 to x/l =1 for 1/d =3 for the near minimum curves of
figure 1k; however, such values are extremely susceptible to small
changes in level in either of the nose or afterbody drag curves and must
only be considered as indicative of the trend.) Also, the drag rises

(ACD = Cp -Cpo. ... -Cp ) for the smooth bodies of
total friction fin pressure

this report are plotted at the fineness ratlo representing the sum of
thelr nose and afterbody fineness ratios. Most of the bodies at low
values of l/d actually had cylindrical center sections and thus their
interference drags were low. This must be kept in mind when the use of
either of the empirical curves as minimum drag boundaries is contemplated.
As an instance of thils, compare the pressure drags of models 84 and 85

which are identical 1n shape \r' = x'l 2 , and fineness ratio of nose
and afterbody, and differ only in the cylindrical center section of
model 85. The higher pressure drag of model 84 must be attributed to
interference of the nose on the afterbody. This interference drag seems
high in comparison with the drag produced by the interaction of nose and
afterbodies of the parabolic bodies of figure 6 which are indicated to
be of the order of model 85 (and essentially zero) by a breakdown of
their drags into component parts and a comparison of the pressure com-
ponents with second-order theoretical calculations (ref. 29). It seems
reasonable to assume that at total fineness ratios below 6, the effect
of nose induced pressures on afterbody drag and perhaps more significantly
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on base pressure (note large base diameter ratios of minimum drag after-
bodies of fineness ratios less than 3 (fig. 13(b)), and see ref. 21 for
some examples of such effects on base pressures) will be the important
and perhaps the determining factors affecting both the shape of the body
and the value of the drag of minimum drag deslgns.

While it is not a factor considered in the discussions of this
report 1t must always be remembered that the dependence of drag on l/d
is also & function of the friction coefficient, and that it is the
increase of friction drag with l/d that limits the drag reduction due
to increasing 1/d.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., September 3, 1957.
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TABLE II.- GEOMETRIC CHARACTERISTICS OF BUMPY CONFIGURATIONS
Configuration 1/atota1 | Su/A Sp/A Ap /A 8y, deg Test Reference| Figure

113

ﬁ; 3.67 12,40 | _0.00 | 1.00 -7.60 Helium gun -- 121
116 5.23 13,10 5.80 .04 5.50 Helium gun - 122
117 5.26 24,79 11.64% J1b 23.90 Helilum gun .- 123
118 5.29 16.00 11,64 .25 17.30 Helium gun - 124
119 5.36 15.60 | 11.28 .09 24,20 Helium gun - 125
120 5.45 14,10 6.28 Ok 5.50 Helium gun - - 126
121 5.68 16.60 | 11.60 .17 20.20 Helium gun - 127
122 6.00 17.50 | 12.00 .00 13.60 Helium gun - 128
123 6,66 17.19 9.22 . 16.70 Helium gun - 129
124 6.82 15.70 5.43 L0652 5.00 Helium gun - 130
125 6.84 18.20 10.76 00 90.00 Helium gun - 13
126 6.86 21.15 12.20 .18 18.00 Helium gun - 132
127 6.95 19.90 11.64 .20 8.80 Helium gun - 133
128 6.98 21.16 11.80 .26 10.30 Helium gun - 134
129 6.98 21.27 1.80 .29 9.70 Helium gun - 135
130 7.08 19,40 13.00 .00 90.00 Helium gun 14 136
131 7.08 21.35 11.86 .20 11.30 Helium gun - 137
132 7.08 19.60 3.56 .12 6.50 Helium gun - 138
133 7.1k 20.26 9.90 .00 90.00 Helium gun - 139
13k Te33 21.70 11.70 .19 .00 Helium gun - 140
135 T.k2 19.00 11.50 .05 15.40 Helium gun — 141
136 7.55 18.70 6.63 .08 5.00 Helium gun - 142
137 7.70 18.80 11.95 L006 50.00 Helium gun - 143
138 1.7 20.90 5.78 20 26.50 Helium gun - 144
139 .76 21.54 11.00 .00 9.40 Helium gun -- 145
140 8.00 2k, 80 15.20 .18 33.20 Helium gun - 146
141 8.03 20.70 2.00 .09 7.90 Hellum gun - T
Iho 8.0k 24,0l 13.00 .23 12.60 Helium gun - 148
143 8.07 23.75 k.12 W15 4,30 Helium gun -— 1kg
1hh 8.10 25.11 13.20 .18 21.50 BEelium gun - 150
145 8.10 25.08 13.20 .18 17.10 Helium gun - 151
146 8.11 21.00 T.67 .09 5.00 Helium gun - 152
147 8.12 25.40 13.20 .18 17.90 Hellum gun - 153
148 8.23 20.80 11.72 .00 16.80 Helium gun - 154
149 8.27 24,00 § 10.90 .29 2.80 Helium gun - 155
150 8.28 20.70 11.80 .06 15.00 Helium gun - 156
151 8.40 23.00 7.88 W17 6.10 Helium gun - 157
152 8.43 23,10 6.00 W17 6.80 Helium gun - 158
153 8.48 23.76 12,62 .30 2.40 Helium gun - 159
154 8.49 23,12 11.00 .00 7.40 Helium gun - 160
155 8.52 23.40 11.50 .08 2.50 Helium gun - 161
156 8.57 25.70 9,70 .00 90.00 Rocket - 162
157 8.70 2.5k 13.12 .20 12,10 Helium gun - 163
158 8.84 25.64 6.64 .18 4,60 Helium gun - 164
159 8.85 25.75 13.1% .21 12.30 Helium gun - 165
160 8.91 25.00 11.00 .19 7.00 Rocket 15 166 .
161 8.92 2k,10 11.50 .07 12.60 Hellum gun - 167
162 9.08 26.26 1k.ko .16 92.10 Helium gun - 168
163 9.09 2440 11.60 .03 8.50 Helium gun - 169
164 9.10 25.55 11.64 .04 10.00 Helium gun _— 170
165 9.22 26.17 7.14 .20 4,35 Helium gun — 171
166 9.28 26.91 7.28 .20 4,06 Helium gun - 172
167 9.31 28.19 10.00 .21 4,60 Hellum gun 16 173
168 9.31 28.19 10.00 .21 4,60 Rocket 16 174
169 10.00 20,35 11.50 .00 90,00 Helium gun — 175
170 10,00 27.40 11.00 .00 6.80 Helium gun -- 176
171 10.00 28,40 16.50 25 k.15 Rocket - 177
172 10.04 30.40 11.00 ,00 90.00 Helium gun - 178
173 10.46 27.40 15.35 .02 4,00 Helium gun - 179 °
17k 10.70 29.80 11.00 .00 6.80 Helium gun - 180
175 11.02 32.40 17.04 .19 7.05 Helium gun - 181
176 11.39 29.20 11.00 .00 18.90 Helium gun - 182
177 12.05 31.90 15.00 Ok 5.00 Helium gun’ -— 183
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Filgure 11.- Drag coefficients due to pressures on noses at M = 1.4,
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(Ref. 30)

(a) Nose pféésure drags of flight models compared with wind-tunnel
results and theory.

.3 PO
X1/l
’/‘ - T
- ]
2 [ T T Elllpsold |
e ‘ ——— —
Cp !
1 : .- Von Karman |
* = 4 I -_%-_— ]
I yn
I
0

2.,

2.8 3.2 3.6

ML

(b) Nose pressure drags from reference 30 showing general effects of
nose shape on drag.

Figure 12.- Pressure drag of noses of fineness ratio 3.
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{b} Configuratlons for minimum afterbody drag at M = 1.2.

Figure 13.- Afterbody pressure drag at M = 1.2.
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Figure 14.- Near-minimum pressure-drag coefficients at M = 1.2 for
noses and afterbodies without interference.
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3.6 10.00 ———’1.25r'

8° il 5
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- - - - —a— - 4 1,0 1
d BEN]
1/d Nose=36 12.0
Mode! no. 8 y- y-574
1.83 =
(E)’- (E =577 (< =707 NE '0‘::_”\ E- -
l/d nose=- .208 34 -066 .023 0.0

2 |

Model no, 7 6 5 4 3

O .1 2 = .Z; A 4 .5 ‘. ‘.6 ”.7 .8 9 1.0
x/1
Z'/dToi:al 12+ 7’/dNo.'.!e G s“n/A k9.0 Ab/" 1,0
Vagsa | .5- [Vrs | o |Se/A | 6.36l % 0

Designation: 1 « 2 =3 - L -5 =-6-7 <8
Test:; Hellum Gun

Remarks: The gbrupt drag variations at subsonlc speeds are undoubtedly
somewhat distorted by the data-reduction process; however, they are
real as evidenced by similar phenomena noted in reference 18 (pp. 200

and 210).

Figure 16.
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Figure 16.- Concluded.
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Designation: 9

Test: Helium Gun

Figure 17.
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x/1
1/drota1| 7.7 |V/9Ncse| 1.92 |Su/A | 25,2 [Ap/A
Vinea | ho62[V/%rt [2.7 [Se7% |6 | %

Designationzyg

Test: pelfum Gun

Remarks: Nondimensional ordinates same as configuration 37 (fig. 45).

Figure 18.
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Dasignations ||

Test: Rocket

Figure 19.
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Designation: 12

Test: Helium Gun

Figure 20.
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Deslignatlons: |3

Teat: Helium Gun

Figure 21.
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| 1/d10ta1{13.47|'/IN0se | 2,98 [Sb/A | 51.3 |Av/A sﬂ
Vagea | .98/t | 2.00 [3¢7A | 24,6 | % L.02

Dsslignation: 4

Test: Helium Gun

Figure 22.
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x/1
1/drotal| 5,00/"/3Nose | 2,00 |So/A | 13,60 |Ap/A 0,0
Vayia | 5.00"/dart | 3,00 3¢/ | 11.0 | & 18.8°

Designation: 15

Test: Helium Gun

Figure 23.
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Figure 23.- Concluded.
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Designatlon: |6

Test:

Helium Gun

Figure 2k.
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x/1
/d1ote1] 7.78|*/dNose| 2.00[Su/A |25.00 [A,/2 | 0.0
Vs |5.00)"%%st | 3.00/5¢/A |11.0 |

9 1.0

12,7°

Designation: i7

Test: Helilum Gun

Figure 25.
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Designation: |8

Test: Hellum Gun

Figure 26.
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Deslignation: 19

Test: Rooket

Remarks: This model 5 times scale of model 20 {fig. 28).

Figure 27.
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5.20
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S¢/A

2.6

L.02°

Designation: 20

Test: Helium Gun

Remarks: This model %

scale of model 19 (fig. 27).

Figure 28.
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Degignation: 21

Test: Hellum Gun

Figure 29.
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Designation: 22

Test: Helium Gun

Figure 30.
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Designatlon: 23

Test: Helium Gun

Figure 31.
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9
5|...|3 0.25
<>_§_. }.; 9 A,l
e 28.88 as5° !
.61
3.75R —
e —— 4384 ——

V/drotal| 5.8 |M/Nose| 0.50/50/2 |19.00 [Ap/2 .19
Vanen |s.8 "%t | 5.3]5¢/2 [11.0 | % 7°

Designation: 2L

Test: Rocket

Remarks: Hemispherlcal nose; parsbclic afterbody.

Figure 32.



NACA TN 4201
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V/810ta1/12.9 'L/dNose| 3.10{S0/A |51,8 |Ap/A

225

Vanea | s.aV/are | 2.74)5¢/A |12, | @

18.6°

Designations 25

Test: Rocket

Remarks: Sting may have some effect on friction drag but hardly any
on pressure drag.

Figure 33.
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1/d70ta1{8.78 |*/9Nose| 2,00 |Sb/A | 26,20 [Ap/A 0.0
Vanea 6.00 M9t | 3.005¢/2 | 11,0 | % 12.99)
Designatlons 26

Test: Helium Gun

Figure 3k.
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41.03 —!
45° |
, T
I 11.94
‘}‘ 9 —»
}“‘“9-0"( 33,
. - 4532 — - 0.25
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.6 7 .8 \ :9 - l:o
- o x/1
Y/10ta1|g, 0l [/ Nose| 3,21 |So/A | 19,14]|R0/4 .19
Vg 6.0y *%%rt | 4.83]5¢/2 | 11,0 | % 9,2°

Daslignatlon: 27

Test: Rocket

Rerarks: Parabolic nose and afterbody.

Figure 35.
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41.03 a = 0.25
J

x/1
V/drota1|6.0h |V/Nose]| .83 [So/A | 16,8, |An/A .19
Vaya 6.0y [V8ses | 1.225¢2 [ 11 | & 25°

Designation: 28

Test: Rocket

Remarks: Parabcolic nose and afterbody.

Figure 36.
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29

Designatlion:

Test: Rocket

Remarks: Parabolic nose and aftcrbody.

Figure 37.
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Deslgnation: 30

Test: Rocket

Remarks: Parabolic nose and afterbody.

Figure 38.
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Test:

Hellum Gun

Figure 39.
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n
130, 1048 1

0 a1 .2 .3 N .5
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1/dpota1| 9.6 |t/%Nose | 5.01 [So/A | 31,6 |Au/A 69
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Deslignatlions 32

Teats Helium Qun

Figure 40.
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2 T TR S 7 .8 .9
x/1

z/dTotallh.é 1/dNose 4.10 Sﬁ/A 52.3 Ap/A 52

Vag,a | 6.100%/9act | 2.0 [Se/A | 24.6 | % l,.02°

Designation: 33
Test: Helium Gun
Remarks: This model 1/5 scale of model 34 (fig. 42); thus pressure

drags of these two configurations should be the same. That they
are not the ssme is obvious, however, if it is assumed that data of
model 34 are in error in M about M = 0.05; then the subsonic
levels and the early drag rises are compatible. This seems to be
justified since the late drag rise of model 3L would be guite
unusual if it really occurred. Model 36 (fig. 44) is similar to
34 and showed the more usual earlier rise. The continued increase
in drag coefficient of model 33 above M = 1.1 1is also pecullar
and 1s probably in errcr.

Figure 41.
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Designation: 3h

Test: Rocket

Remarks: See figure 41.

Figure k2.
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1. O - 120

V/drotal]9.32 |V/dNose | 2.98 |So/A | 20,00 |Av/A 0.
Vages 642 [M8re | 3001502 | 11,0 | & 13,30

Deslgnation: 35

Test: Hellum Gun

Figure UL3.
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75 >

L/d10t81|15.00] /INose | .50 [Sb/A | 52,4 |Au/A .52
Vaysn | 6.50/"%art | 2,00 [Se7A | 2.6 | % ,020

Degignation: 3§

Test: Roocket

Remarks: See figure 41.

Figure L.
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6.92 e

TR ek

.0323

0 .1 .2 .3 A .5 .7 .8 .9 1.0

x/1
1/dTota1/10.87|1/Nose | 2.71 |Su/A | 35.6 [Ap/A .0
V/ayea | 6,51 9act |3.8 [Se/2 h2.82 | % 60°

Deslignation: 37

Test: Helium Gun

Remarks: Nondimensional ordinates identical to configuration 10
(fig. 18).

Figure 45.
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Figure 45.- Concluded.
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x/1
1/d70ta1(13.9 |V/dNose | 3.80 |Sb/A | 49.6 [Ap/A .2

Vayia | 6.52[Y/art | 2,72 [5¢/A (12 [ % Ja7.4°

Designations 28

Test: Rocket

Remarks: BSpike can affect friction drag but is not likely to affect
pressure drag.

Figure U46.
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Figure 46.- Concluded.
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NACA TN L201

x/1
1/d7ota1|7.00 |/ 4Nose| 2.80 [So/A | 19.00 |Ap/A 0.0
V/dgen |7.00 [W/dpey | 1e20(Se/8 | 11,0 | & 12.9°

Designation: 39

Test:

Helium Gun

Figure b7.
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Figure 47
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302R

0.25

45°

1.6l

NACA TN 4201

x/1
1/d10ta1{7.16 [*/4Nose| 1.81 [Su/A | 21,00 |[4,/8 .19
Vania |7.16 [V4st | 5.35(S5¢/A | 11.0 | 8 70

Designations ko

Test: Rocket

Remarks: Flat nose having r/R = 0.57 flaired into parsbolic segment

by 3.02 radius; parabolic afterbody.

Figure 48.
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100x%1l

Cp

Figure U48.- Concluded.
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x/1
1/d10ta1{7.30 |*/Nose| 1,955/ | 2l.2 [Ap/A .19
Ve |7.30"%ars | 5.35[5¢/2 | 11,0 | % 79

Designations L

Test: Rocket

Remarks: Nose consists of hemispherical segment plus parabolic
segment; parabolic afterbody.

Figure 49.
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6
100x10

Cp

Figure 49.- Concluded.
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NACA TN 4201
1.8

S L

939 DR Lage }‘ ’—T

‘ | 2.23

e — =
|
12.86 : N

120>

V/4rota1] 8,574/ Nose [ 3.02 |Sb/A | 25.60 [A/A | 0.0
Vagea | 7.331"%ars (L1 [S¢/2 [11.0 | % 909

Designation: L2

Test: Helium Gun

Figure 50.
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Figure 50.- Concluded.

107



108

45°

°

.64

NACA TN k20l

x/1
1/drota1|7.35 |1/9Nose| 2.0 |Su/A | 22,70|A0/A .19
Veagen |7.35 [V9are | 5.35/5¢/2 | 11.0 | % 6°
Designations I3

Tests Rocket

Remarks: Parabolic nose and sfterbody.

Figure 51.
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Concluded.

Figure 51.-
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110
7.70
.14 i
1.0 120"
8h
6
r/R E
0 =1 2 3 L .5 .6 7 .8
) x/1
V/d7ota1l7.43 |2/ ose| 3.58 [So/A | 20.90 |Ap/A 0.0
Vanea f7.43 ["/%are | 3.85]5¢/A | 11,0 | & [15.0°

Designation: Ly

Test: Hellum Gun

Figure 52.
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Concluded.

Figure 52
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45° f

1/d70ta1|7.47 |V/ONose | 2,12 [Sb/A | 24,30 |Au/A .19
Vay,s 7.7 [V/4rs | 5.35 (374 | 11,0 | % 6°

Designation: ks

Teat: Rocket

Remarks: Conical nose with hemispherical and parabolic segments;
parabolic afterbody.

Figure 53.
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1111

i

=

FEE 3

Concluded.

Figure 53.-



11k NACA TN 4201

57.0

V/d7ota1| 7.60|/N0se| 2:25(Sp/A | 25,10 [Ap/A .19

Vaysa | 7.60/"%ars [5.35 [Se/2 (11,0 | % 7°

Designation: Lé

Test: Rocket

Remarks: Nose with hemispherical and parabolic segments;
parabolic afterbody.

Figure 5k.
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Figure 5k4.- Concluded.
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1/d1otal|7.66 |1/ Nose 2.33 |sp/A | 25,3 [Mp/A .19
Vagen |7.66 ["/9are | 5.33|5¢/% | 11,0 | % 70

Designatlions L7
Test: Rocket

Remarks: WNose consists of parabolic segment; parabolic afterbody.

Figure 55.
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Figure 55.- Concluded.
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.8

9 1.0

0 .1 ‘ .2 .3 4 .5 .6 .7 '
x/1
1/drota1| 1049 [1/dNose | 6.00 Sp/A | 32,6 |Ay/4 0,0
Vag,a |7e72[ /dppy 1 1472 S¢/8 | 11,0 | B 290

Deslgnation: kg

Test: Helium Gun

Remarks: Body differs from configurations 49 and 50 (figs. 57 and 58)
only in removal of Mach 1 ares distribution of fins from afterbodies

of these models.

Figure 56.
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i
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i x106

Figure 56.- Concluded.
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1.0

NACA TN L4201

17.18

120>

l/dTotal

11.54

z/dNose

Sp/A

39:50

0.0

1/dysa

7.78

l/'dArt

1.78

Sf/A

11.0

29.%

Deslgnationg Lg

Test: Helium Gun

Remarks: Parabolic nose and afterbody; body identical to config-

uration 50. (See note for configuration 48 (fig. 56}.)

Figure 57.
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Figure 57.- Concluded.
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i7.18

x/1
V/dpote1l11.5 |V/ONose| 6.0 |Sb/A | 35,5 [Ap/A 0.0

Vayea | 7.78/"C%et | 1.78 [Se/2 | 11,0 | O |B.7

Designation: 50

Test: Hellum Gun

Remarks: Parabolic nose and afterbody; body identical to config-
uration 49. (See note for configuration 48 (fig. 56).)

Figure 58.
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Figure 58
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13,20

NACA TN L4201

3

8

.2 A .5 ;6

x/1
V/drota1|11.08|l/Nose | 3.42 [So/A | 3l Lo |Av/A 0,0
Vayen | 7.80dart | 1,38 [3¢/R | 11,0 | % .8°

Designation: 51

Test:

Helium Gun

Figure 59.

9 1.0
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Figure 59.~ Concluded.
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- 59.17

x/1
/dzota1| 7.9 |/9Nose| 2,57 [So/A | 25,70 |Au/A 19
Veanea | 7.9 [VOrs | 5.33 [5¢/2 | 11,0 | & 7°

Designation: 52

Test: Rocket

Remarks: Nose consists of hemispherical and parabolic segments;
parabolic afterbody.

Figure 60.
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100x10

Concluded.

Figure 60.-
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120

0 .1

.2

.5‘..‘,.
x/1

.8

1/drotal

8.00

7'/dNoae

3,20

Su/h

21.9

0.0

1/dya

8.00

Vet

4.80

Sp/A

11.0

8.59

Designation: 53

Tests

Hellum Gun

Figure 61.

9 1.0



NACA TN 4201 129

Figure 61.- Concluded.
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736
I_d—.z)ss
<Z,‘L_,032
8.21 >~ 6C°
- 7.34 |.758

x/1
1/dTota1| 8.0 |V/3Nose | k.66 [So/A | 23.16 [Ap/A .17
V/anea | 8.0 [V9are | 3.0 [Se/R [5.8 | 8 [9.5°

Designation: 5Sh
Test; Helium Gun

Figure 62.
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Figure 62.- Concluded.
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10.0

Section A~A

an

S S T N TN R S e I TR T Rt N

385

1/d1ote1|{8.0
L/dy,a 8.0

Sp/A |26.3  |Ay/A 0
Se/h (L3 | 8y .0

Deslgnatlion: §§

Test: Helium CGun

Figure 63,
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Figure 63.- Concluded.
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NACA TN 4201

..3 '5.

«9 - -]-.-.0

x/1
1/d70ta1]12.,00{}/dNose | 3.00 [So/A | 36.38 [Ap/A .19
Vaysa | 8.00"%st | 5.00[5¢/% | 11,0 | % 3,20

Pesignation: 56

Teat: Helium Gun

Remarks: Conical nose and afterbody.

Figure 6k,
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Figure 6k4.- Concluded.
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136
1.8
,sH,s
< 05 r-! 8*1
45°
2.38
18.0 /\
120°
r/R
B 181 FEEE) FY RSt SN AT Y g
0 1 .2 .6 .7 .8 .9 1.0
l/dTotal sb/A z7.0% Ab/A .19
Vayea | 8.0["%st | 5.0 [5¢/2 |11,0 | % 3.2

Deslgnation: 57

Test: Helium Gun

Remarks: ©Nose, r' = ; conical afterbedy.

2x' - l{x’)g
2
1
3

Figure 65.
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Figure 65.- Concluded.
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45°

2.38

NACA TN L201

Designations 58

Test: Helium Qun

Remarks: Nose, Von Kdrmsn, r' = J-l: g - 1/2 sin2¢ where
3\
T

$ = cos™H(1 - 2x'); conical afterbody.

Figure 66.

1 .2 A 5 .6 o7 .8 .9 1.0
x/1
1/d70ta1l12.00|/dNose | 3,00 |Sb/2 | 38,25 |A/A N
1/awea | 8.0 [“¥rs |5.00 [3¢/2 |11.0 | 3.2°
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Figure 66.- Concluded.
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18.0

NACA TN L4201

120"

- :

08

3 7

) x/1 N
1/410t91/12.00|4/dNose | 3.00/Sp/A | 38.40 [An/A .19
V/dg,a | 8.00"/%art | 5.005¢/A [11.0 | G  |3.2°

Deslgnation: 59

Test: Helium Gun

Remarks: Parabolic nose; conical afterbody.

Figure 67.

9 1.0
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Figure 67.- Concluded.
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NACA TN L201

1202

1.0+

Designation: g

Test; Hellum Gun

Remarks: Nose, L-V Haack, r' = ‘Jl—_\[¢ - 1/2 sin®f + 1/3 sin’g
T

where @ = cos™1(1 - 2x').

Figure 68.

x/1
V/dpota1| 12,0{'/Ncse| 2.00 {So/A | 38,78 [Av/A .19
Vana | 8,0"%st | 5.00 5/ | 11,0 [ % 3,20
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Figure 68.- Concluded.
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NACA TN. 4201

120

.8

T 1.0

.1 .2 .3 A .5
x/1
1/d70ta1(12.00"/9Nose | 3.00 [Sb/A | 37,21 |Ap/A ,19
Vdyea | 8.00[* %t {5.00 {574 | 11,0 | b 3,20

Deaignation: ¢

Test: Helium Gun

3/

Remarks: Nose, r' = x

Figure 69.
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Figure 69.- Concluded.
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Vdrotal| 12,0/ /9Nose | 3.0 [Sb/2 |30 cp [Av/A 219
'Nose | 3 37.5 g
Vg | 8.0]/%rs |5.00 [Se/% [12.0 [ & |32

Designation: 62

Tests Helium Gun

Remarks: Nose, T

Figure 70,
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Figure 70.- Concluded.
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NACA TN k201

120°

Se/A 11,0 | %

V/anea | 8,00"/8ars | 5,00

1 .2 .3 An .5 .6 K .8 .9 1.0
x/1
/drota1l12.00//Nose | 3.00 |Sb/A | 38,50 |Ap/A 9
3,20

Designations 63

Test: Helium Gun

Remarks: Nose, r' = x' %‘ conical afterbody.

Figure T1.
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Figure TLl.- Concluded.
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45°

6067

NACA TN L4201

l/dTotal

8.10

l/dNoae

2.7% |Sp/A

26,08

L/dgea

8.10

LIS

5.37 |Se/

11.0

Designation: &y

Tests; Rocket

Remarks:

Nose consists of hemispherical and parabolic segments;
parabolic afterbolic.

Figure 72.
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x/1
1/d10ta1{10.93|*/Nose | 3.38 [Sb/A | 3).10 [Ap/A 0.0
Vag,n | 8.20[8/dpet | 4.82 [S¢/8 | 11.0 | & 9o

Designatlon; 45

Test: Helium Gun

Figure 73.
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Figure 73.- Concluded.
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NACA TN k201

62.30

x/1
Vdpotal] 8.3 |V/9Nose|2.96 [So/A | 26.5 [An/A .19
Vagea | 8.3 [M/9re 5.3 [S¢/A | 11.0] 8 0

Designations 64

Teat: Rocket

Remarks: Nose consists of hemispherical and parabolic segments;
parabolic afterbody.

Figure 7h4.



155

NACA TN L4201

POPNTOUO) -

%), 2InBT A

oawooa




156

13.820
12.575

NACA TN L2001

V/dpotal

9.02 z/dNoae

.27 |Su/A

26,6

038

L/dN+A

8.33 v/,

5.06 Sf/A

9.2

23

Designatlon 67

Test: Hellum Gun

Figure 75.
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Figure 75.- Concluded.
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C —»

65C] ﬁ_l:95c
-Q?_

794

1/dqotal 8.L4lL 1/dyose| 3,20 Sp/A 24,90 Ap/A .26
Vayea g V90t | 5,2, |5¢/2 | su5] % 3,50

Designation: 68 .

Test: Rocket

Remarks: All conical sections.

Figure 76.
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10(',‘!(106

Concluded.

Figure 76
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7078
85.0
1. Oz
.8
6E
r/R
"4: HF, 35
il : B
e IRt
] s s i : :
i : _: H H ;t
EiENE f H T B A EIGE f i
S A R R B s R e e R R
0 .1 .2 .3 i .5 7 .8 .9 1.0
x/1
V/drotal| 8.5 |V/dNose | 3.60 [Su/R | 26,30 |Ay/A £30
Vagea | 8.5 [Vars | L9 [Se/2 | o.7u] ®b 5.6°

Designation: 69

Tests Rocket

Figure 7T7.
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NACA TN 4201

1.0

.1‘” .2 .5” ' g4 .5 .6 .7 .8 «9
_ x/1
V/drotal]| 8.5 |*/dNose| 3.16 [So/A | 26.80|An/A .19
YO

Vansa | 8.5 [Mart | 5,34 [Se/% [ 11,0 | %
Designatlion: 70

Test: Rocket

Nose consists of hemispherical and perabolic segnents;

Remarks:
parabolic afterbody.

Figure 78.
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Figure 78.- Concluded.
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65C+ | { os¢ 10.00

60°

68.8

Y

x/1

1/d10ta1/8.60 |*/9Nose | 5.59 |So/A | 25.70 |Au/A .36
V/dy,a 8.60 |Mrt | 3.01[S¢/A | 5.2 | B L.55°

Designation: T1

Test: Rocket

Figure 79.
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NACA TN L4201

1/d1otal 27.3 |Av/A

.19

VNea 11.0 | ®

70

Designations 712

Test: Rocket

Remarks: Nose consists of hemispherical and parabolic segments;
parabolic afterbody.

Figure 80.
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100210
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Figure 80.- Concluded.
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9.62

13.22

NACA TN 4201

120>

1/d1ote1

8.81 [/dNose

28.8

233

L/dgsa

8.81 |*/dart

1l

6.9°

Designation: 73

Test: Helium Gun

Figure 81.
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10x106

- Concluded.

Figure 81
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V/areta1]| 8,91 /%Nose | 1.78 [So/A | 28.26 [A/A | 19
Vayea | 8.91("are |7.13 [5¢/* [11.0 | B |e,50

Designations 7L

Test: Rocket

Remarks: Parasbollc nose and afterbody.

Figure 82.
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Figure 82.- Concluded.
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7'/‘iTot:a.l

8.91

1/dNose | 7.13 [Sb/A

2,

219

1/dgsa

8.91

Veaey | 1.78 |Se/A

11,0

18.3°

Deslgnation: 75

Test: Rocket

Remarks: Parsbolic nose and afterbody.

Figure 83.
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Figure 83.- Concluded.
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IO'ZS

30 30 |-. °
Rl

11.61

I I S R 7 8 .9 1.0

x/L
V/870ta1| 8.91)'/%Nose | 3,56 |So/* | 27.00 [Av/2 .19
Vayea | 8.91[dart | 5.35|Se/2 | 11.0 | O 6.0

Designatlon: «¢

Test: Rocket

Remarks: Parabolic nose and afterbody; waviness of coefficient of low
Msch number models is probebly due to afterburning of their sustailner
rockets.

Figure 8k.
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3|ee3
<> 0.25
60.48" f

i r
g Al : i :
il I o o 0 R i s S
0 .2 .3 A .5 .6 .7 .8 o9 1.0
x/1
1/d1ote1|8.91 [/ Nose |5.35 [Su/A | 26.02|An/8 .19
Vayea [8.91 [V9rs [3.56 [3¢/2 | 11.0 | ®  ho.20
Designation: 77
Tests; Rocket
Remarks: Parebolic nose and afterbody.

Figure 85.
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Concluded.

Figure 85
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1/d7045118.91

7.13 |Sp/A

26,10

1,00

Vagsa 8.91

1.78 |Sg/4

11.0

oD

Designation: 78

Test: Helium Gun

Remarks: Parabolic nose.

Figure 86.
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Concluded.

Figure 86.
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e———— 10.4

13.36

NACA TN L201

120°

L/dTotal 8.91

l/aN+A 8_91

Deslgnatlion: 79

Test: Helium Gun

Figure 87.
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Figure 87.- Concluded.
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45°
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NACA TN 4201

2d
Hoere

H ! : i Hitii :;i i
.1 .3 4 .5 .6 .7 .8 .9 1.0
x/1
V/drotal] 8.91{"/Noss | 7,12 [Sb/A | 21,8 |Ap/A .19
Vanea | 8,910t [ 1,78 [5¢72 | 11,0 | %o 17.5°

Designation: 80

Test: RHelium Gun

Remarks: Parabolic nose and afterbody.

Figure 88.
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Figure 88.- Concluded.



NACA TN L4201

184

[ )
- O
o &
oN

-
Sl &

P
~ O
Yy
N
< | <
S~
st
[ 23

~ | ey
SRR
) o e
e o~

®
Mt
5|
S
L e )
—
ay O
D @

~

o
2
ol +
5l &
~ =
-~ | o~

81

Designation

Helium Gun

Tests

Parasbolic nose and afterbody.

Remarks

Figure 89.
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Figure 89.- Concluded.
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NACA TN 4201
1.8
5%45L: 1'05 F‘L3‘4
45° I
10.4 —_—— 25
U
13.36 {
120°

.2 3 olf 5

V/d10ta1}8.91 |1/Nose | 7.13|S0/A

2.2 [Ap/A .19

V/dgea |8.91 [Wdary | 1.78(S¢/A

Dsslgnatlions 82

Tests Hellum Gun

Remarks: Persbolic nose; conical afterbody.

11.0 | &% 9°

Figure 90.
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Figure 90.- Concluded.
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l/dTotal

8.91

1/dNose |7.13 [Su/A |25.10

L/Anaa

8.91

Viaary {1.78 [Se/ |11

Deslignation: 8%

Tests Helium Gun

Remarks: Parabolic nose and afterbody.

Figure 91.
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Figure 91.- Concluded.
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NACA TN 4201

13.36
7 o i
Ei l E::Eﬁ
: T
il S5 15
.6 7 .8 9
t/drotal 8.91 L/dNose | 4,66 {Sp/A 24.5 Ap/A 09
Vanea 18.91"%rt |ho25 [Se/2 [11.0 | % | 9.7°
Daaignation;eh
Test: Helium Gun
Remarks:

Contour of nose and afterbody exsctly the same as those
of configuration 85 (fig. 93).

Figure 92.
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Figure 92.
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ot 18.75

Va70ta112,5 |V/9Nome | Ii.66 [So/A | 38.8 |Ap/A .09
Veanea 18.91Mdrt k25574 | 11,0 | % li0.70

Designation: 8g

Test: Helium Gun

Remarks: Contour of nose and afterbody exactly the same as
configuration 8k (fig. 92).

Figure 953.
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Figure 93%.- Concluded.
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14.610

- 12.575

rHEERR TR HE
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1/d1otal1lg,. 13 |[V/dNose 3,28 |So/* | 8.0 [%/2 | . 008

Vanen |9,13 Vst 5,85 [Se/A | 8,30 [ % | 30°
Designation: 86
Test: Helium Gun

Remsrks: Flat face of model caused high subsonic drag. (See also
configuration 47 (fig. 55).)

: ' Figure 9k.
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Figure 94.- Concluded.

195



196

NACA TN 4201

1/dpotal

9.38

1/dNose 3.63 Sp/A

28,00

211

V/dgia

9.38

sy | 5.75 [Se/A

6.40

7.0°

Deslignation: 87

Test: Rocket

Remarks: Parabolic nose and afterbolic.

Figure 95.
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L/drotal] 9.54|"/INose | 120 [Sb/A | 28.60 |Av/A .17
Vs | 9.5, %rt | 5.3 [Sc/A | 6y | % 8.759

Designation: B8
Test: Rocket

Remarks: Parabolic nosg and afterbody.

Figure 96.
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Figure 96.- Concluded.
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x/1
V/410t81[10.0 {V/dNose | L. 00 [Su/A 30,88 |Ay/A .25
/an+a 110.0 |V8ars | 6.00(S¢72 | 111 | % L.47°

Designation: 89

Test: Rocket

Remarks: Parabolic nose and afterbody.

Figure 97.
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x/1
V/470t01(20.0 |/dNose| .75 |Sb/A | 29,6 [Av/A | 3¢
Vanea ho.o [VOars |5.27 15072 [17.76 ] % le,Ls0

Deslgnation: 90

Testsz Rocket

Figure 98.
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2

1/drotel 10.51¢l/dNose 5.38 Sp/A 34.40 Ap/A .19
Vanra 10.54[H/dart | 5,16 [S¢/A [ 11,0 | & 7.0°

Designations 91

Test: Roocket

Remarks: Nose ccnsists of hemispherical and parsbolic segrents;
parabolic afterbody.

Figure 99.
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Figure 99.- Concluded.
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: HEE i En iR i
.2 .3 4 .6 .7 .8

V/410t81|10.63|"/9Nose | 7.13 [Sb/A | 33,0 [Ay/a 1.0

V/Ansa  [10.63*/9art | 3.50 [Se/A | 11,0 | 0®

Designation: 92

Test: Helium Gun

Remarks: Parabolic nose; cylindrical afterbody.

Figure 100.
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Concluded.

Figure 100.-
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15.96 1{
o
1.0 120

x/1
1/470ta110.63|1/9Nose | 7.13 [So/A | 31,60 |Ap/A 49
V/dpea [10.6308 /850 | 3,50 [Se/A | 12 8y 5.4°

Deslgnation: 93

Test: Hellum Oun

Remarks: Parabolic nose and afterbody.

Figure 101.
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‘Figure 10l.- Concluded.
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120

Designation: 9k

Test: Hellium Gun

Remarks: Parabolic nose and afterbody.

Figure 102.

x/1
1/d10t41(10.63|'/9Nose | 7.13 [So/A | 30,06 [An/A .19
V/dnva  [10.63/Y%ars | 3,50 [Se7A [11.0 | O °
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Concluded.

Figure 102.
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x/1
1/q70ta1(10. 63|}/ Nose | 7.13 [Sb/A | 28.30 [Aw/A | 0.0

Ly, 110.63)*/dact | 3.50 [S¢/A [11.0 | O |15.8°

Designation: 95

Test: Helium Gun

Remarks: Parabolic nose and afterbody.

Figure 103.
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Figure 103.- Concluded.
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o .1 .z .3 45 L6 K R R
x/1 '
V/drota1p1.2 |t/dNose|7.16 [So/A | 62,5 [Au/A .19
Vayea R1.190/dare | 4.03 |Se78 | 11,0 | 8 L0

Designation: 96

Teats: Rocket

Remarks: Conical nose and afterbody.

Figure 10k,
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Figure 10k.- Concluded.
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Designation: g7

Test: Rocket

Remarks: Conical nose and afterbody.

Figure 105.
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Figure 105.- Concluded.
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NACA TN 4201

Designations 98

Tests; Helium Gun

Remarks: Parabolic nose; cylindrical afterbody.

Figure 106.

1 .2 .3 N .5 .7 9 1.0
x/1
V/d10ta1(12.13|4/ dNose | 7.13 [So/A | 38,9 [Ap/A 1,00
Vay,a  |12.13*/9art | 5.00 [Se72 | 11.0 | % 0°
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Figure 106.- Concluded.
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i
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L/drotall12,13|1/dNose | 7.13 [So/A | 36,9 [Ap/A ol
Ve |12.13)*%rt | 5,00 |S¢/A | 11.0 | % 3.L2

Designation: 99

Test: Hellium Gun

Remarks: Parabolic nose and afterbody.

Figure 107.
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Figure 107.- Concluded.
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le———— 14.8
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18.20
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1/d7ota1(12.13{'/WNose | 7.13 [Su/A | 35.8 |M/A L9
Vag,a 12,1304 /d0¢ | 5.00 [S¢/A [ 11,0 | & 1.7°

Designation: 100

Test; Helium Oun

Remarks: Parabolic nose; conical afterbody.

Figure 108.
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x/1
V/d7ote1]12.13|'/SNose | 7.13 [S6/A | 33,3 [An/A .19
Vayea [12.13)4/d5rt | 5.00 |Se/A | 11.0 | 8 3.2°

Designation: 101

Test: Hellum Gun

Remarks: Parabolic nose; conical afterbody.

Figure 109.
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Figure 109.- Concluded.
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x/1
V/d70ta1[12,13|1/Nose | 7.13 [Sb/A | 35,20 |Ab/A ,19
Vay,s ha.asrt |g.00 Se/2 [ 11,0 | B 6.1°

Designatlon: 102

Test: Helium Gun

Remarks: Parabolic nose and afterbody.

Figure 110.
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Figure 110.- Concluded.
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120

l/dTotal

12.13{1/dNose | 7.13 [Su/A

32.2

0.0

L/AN4a

12.13(%/9prt

5,00 |Sg/A

11.0

11.7°

Deslgnation: 103

Test: Hellum Gun

Remarks: Parabolic nose and afterbody.

Figure 111.
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Figure 111.- Concluded.
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129

146.5

V/drotaih 2,2 |/ Mose| 7.5 [So/A | 3¢5 |Ao/A 2

Vaea hao [Vrs k7 [5¢72 | 308 [ % 7.8

Designation: 104

Test s Rocket

Remarks: Parabolic nose and afterbody twice scale of model 105.

" Calculsted friction drag coefficlents are obviously too high.
(See note for model 105 {fig. 113%) about oscillations in drag
curves. )

Figure 112.
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— *
146.5 \[¥\

x/1
L/dTotal].Z.Z V/dNose 7.5 Sp/A 36,3 [Ap/4 .36l

Vaga hz.2 [Vt |4.7 [Se/A | 30.8 | & 7.6

Designation: 10%

Tests Rocket

Figure 113.
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Sp/A
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219

L/dy,a

12.5

1/’dArt

S;/A

11.0

3,2°

Designation: 106

Test: Rocket

Remerks: Parabolic nose and afterbody.

Figure 11k,
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Figure 114
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[e]
l/dN+A 12.5 l/nd 2.5 Sr/A 11.0 gb 12,67

Designations 107

Test: Rocket

Remarks: Parabolic nose and afterbody.

Figure 115.
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Figure 115.- Concluded.
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V/d7otal] 12,54/ Nose | 5,00[5074 | 38,10/40/2 .19
o
Vanen |12.51"%ss | 7.50/5%¢72 | 11,0 % L.3

Deslignation:

Test: Rocket

Remarks:

108

Parasbolic nose and afterbody; both models appear to have been

affected by rocket afterburning which caused the wavy curve of Cp
a1t supersonic Mach numbers.

Figure 116.
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Figure 116.- Concluded.
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9
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.84

x/1
1/dpota1]12.5 |1/3Nose | 7.50 [Sb/A | 36.50]|An/A .19
Vanea |12.5 [W%%¢t | 5.00[5¢/4 | 11,0 | & | 6L

Designation: 109

Test: Rocket

Remarks: Parabolic nose and afterbody.

Figure 117.
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Vansa |12.5Y9ars | 6.25[5¢/2 | 11.0] % 90°

Designation: 110

Test: Hellum Gun

/b
Remarks: Nose and afterbody, r' = x 2

Figure 118.
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Figure 118.- Concluded.
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0.25

45

11.89
—t

133.2

1/d10tal lY.YSZ/dNose 10.65 Sp/A | 52 0 |Ap/A .15

Vayea |17.78%%s6 [ 7.1 [Se/A | 11.0 [ % [L.6°

Designation:; 111

Test: Rocket

Remarks: Parabolic nose and afterbody.

Figure 119.
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Figure 119.- Concluded.
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Deslgnation: 31312

Test: Rocket

Figure 120.
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Figure 120.- Concluded
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4.40 |'~7_/5’::

$ 1.20

Flat nose no. 113 t
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x/1
1/d7ota] 3,67 |V/9Nose Sp/A 12 o Ay /A 1,0
)
L/Agaa Vdart Se/h | g ) -7.6

Deslgnations 113-114-115

Test: Helium Gun

Remarks: Curves presented are faired values obtained from the drag of
two models for each of the configurations. 1In each case the drags
of the identical models were quite close, indicating that the models
were at essentially o° angle of attack since it does not appear
reascnable that the drag due to oscillations would be a repeatable

phenomena.

Figure 121.
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Figure 121.
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t/d7o4a1

523

l/dNoae sb/A
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Vayaa

5.23

l/dArt sf/a

5.8

Designation: 116

Test: EHelium Gun

Figure 122.
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Figure 122.- Concluded.
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0 o1 .2

.7
x/1
V/d1otall 5,260 9Nose Sp/A | 2,79 |Au/A S
Vianea | e, 06|t/ %ars Se/A | 11,6 %  |a3g0

Designatlion: 117

Test; Helium Gun

Figure 123.

9 1.0
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Figure 123.- Concluded.
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Designation: 118

Test: Hellum Gun

Figure 124.
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x/1

L/dTotal

5'56

So/A
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V/dnsa
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S/A

11.28

2,,2°

Pesignation: 119

Test:; Hellum Gun

Figure 125.
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Figure 125.- Concluded.
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x/1
1/d10ta1| 5,450 /Nose Sp/A | a1 {An/A Lol
V/ansa | 5450 %rs S¢/h | ¢.28] B 5,50

Designation: 120

Test: Relium CGun

Figure 126.
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Figure 126.
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Designations: 121

Test: Helium Gun

Figure 127.
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Figure 127.- Concluded.
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0 1 w2 .3 NN .5 .6 K- .9
x/1
V/410ta1] 6.00|"/Nose | 2,5, |So/A |17,80 [A/A | g9
VN4 |6.00" st 3,06 150/ 1120 | % | 134

Designation; 122

Test: Hellum Gun

Figure 128.
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Figure 128



264 NACA TN 4201

i 4 4 - : :*t
; : S S
: G LR i e
Hiitino i ] i i e i i
i : : “ = i i ::::?ﬁi
e e e e TR
.2 .3 i .5 .6 7 .8 K 1.0
x/1
V/drotall 6,66/ Nose Sp/A | 17,19 |Ap/A .06
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Designatlon: 123

Test: Helium Qun

Remarks: Subsonic flow probably separated at rear step.

Figure 129.
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Figure 129.- Concluded.
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Designation: 12L

Tests Helium Gun

Figure 130.
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Figure 130.- Concluded.
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x/1

V/dpotal
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l/dNoae
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18.2

Ay /A
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L/Ayea

6.81}

1/’dArt

S/h

10,76

90°

Designation: 125

Test: Helium Gun

Remarks: Although the calculated friction drag indicafes that the fins
may be in turbulent flow at subsonic values of M, it 1s possible

that they may be in laminer as their low Reynolds number would

predict. The drag difference between the laminar friction calcu-
lations and the experimental subsonic values may be due to sepa-

ration over the base

= 0.k,

L]

X

Figure 131.

(T =~ (.970) and over the forward step at
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Figure 131.- Concluded.
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z'/dTot‘.s\l
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l/aH+A

6.86
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18°

Deslignations 126

Test: Hellum Gun

Figure 132.
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Figure 132.
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V/drotal| 6,954/ Nose So/A | 19.90 |Ap/A 20
V/4xea 6.95 l/dAft Sf/A 11.6} 6y 8.8°

Designation: 127
Test: Helium Gun

= O.é\ and subsonic

Remarks: Assuming separation at step (’—l‘
= 0.1 x 0.5 = 0.05.

C, = =0.1, the subsonie base drag would be C
P Dbase

This would indicate that subsonic fin flow was laminar.

Figure 133.
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Figure 133.- Concluded.
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Designation: 128

Teat: Helium Gun

Figure 13k4.



NACA TN 4201 275

Figure 134.- Concluded.
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Designation: 129

Teat: Helium Gun

Figure 135.
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Figure 135.- Concluded.
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L/dNose sl:.\/A
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7.08

/3,04 Se/A

1%.00

90°

Designation: 130

Test: Helium Gun

Remarks: Subsonic flow probably separated about % = 0.97.

Figure 136.
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Figure 136.- Concluded.
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x/1
V/870ta1|7.08 |/dNose {Su/A | 21.35 [Ap/4 .20

Vanea  |7.08 |V/9ars Se/A 1 11.86] ® 11,30

Designatlon: 121

Test: Helium Gun

Figure 137.
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Figure 137.- Concluded.
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0 1 .2 ) 5.6 7 =8 9 1.0

x/1
1/dpota1 7.08 L/dNose Sp/A 19,6 Ay/A 212
V/ayea | 7.08]"%art Se/A | 3,661 % 6.5°

Designation: 132

Test: Helium Gun

Figure 138.



283

NACA TN 4201

12%10

Concluded.

Figure 138
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1/drotal 7.1l Zédﬂoaa ~ sb/A 20,26 |Ap/A 0.0
Vagea | 7.1 %art Se/A | 9.90] 8 90°

Designation: 133

Test: Helium Gun

Remarks: Flow is probably separated at subsonic speeds.

Figure 139.
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Figure 139.- Concluded.
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Deslgnation: 134

Test: Hellum Gun

Remarks: Probable that subsonic flow was laminar. (See note for
model 125 (fig. 131).)

Figure 140.
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Figure 140.- Concluded.



288 NACA TN 4201

— ' « # iy ;
A i
0 1 .2 .3 L .5 .6 T .8 .9 1.0
x/1
1/drota1| 7.42]1/9Nose Sp/A | 19.00 |An/A .05
Vaya | 7.52149acs Se/A | 11.50] % [15.4°

Designation: 135

Test: Hellum Gun

Remarks: OSubsonic drag locks too high.

Figure 141.



NACA TN L20l 289

Figure 1k1.- Concluded.
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Designatlion: 136

Test: Helium Gun

Figure 1h2.
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Figure 142.- Concluded.
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x/1
L/drota1] 7.7 {/9Nose So/A 118.8 /2 |,005

Ve | 7.7 [V %%ss Se/A {11,95] % | 90

Designation: 137

Tests Hellium Oun

Figure 143.
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Figure 143.- Concluded.
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x/1
V/d1ota1[7.75 |/ Nose Sp/A | 20.90 |Ap/A .20

Vagea |7.75 M/ 9rs S¢/A | 5.78] % 26.5°

Designations 138

Test: Helium Oun

Remarks: Remarks for configuration 125 (fig. 131) may apply to these
models also.

Figure 1Lk,
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Figure 14k.- Concluded.
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1. Omrors
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8.9

.2 .3 4 5
x/1
V/drotal 7.76 V/dNose Sp/A 21.54 Ap/A 0.0
Vayea |7.76 [V 9rs S¢/h 11,0 | % 40}

Designation: 1324

Test: Hellum Gun

models also.,

Figure 145.

Remarks: Remarks for configuration 125 (fig. 131) may apply to these

1.0
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Figure 145.- Concluded.
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Designation: 1L0

Test: Helium Gun

Figure 1k46.
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Figure 146.- Concluded.
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Fin section
64A007

10.14

x/1
1/dpotal 8.03 t/dxcse Sy/A 20,70 Ay/A .09
V/ayen | 8.03]"/dars Se/A | 9,0 1%  |7.9°

Designatlion: 1Ll

Test: Helium Gun

Figure 147.
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Concluded.

igure 147.
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